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THE LATERAL INSTABILITY OF YIELDED MILD STEEL
BEAMS OF RECTANGULAR CROSS-SECTION

By B. G. NEAL,* Engineering Laboratory, University of Cambridge
(Communicated by Sir Gegffrey Taylor, F.R.S.—Received 20 December 1948—Revised-4 July 1949)
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The critical load causing secondary failure of a deep beam by lateral buckling may be calculated by
standard methods for those cases in which the beam behaves elastically under the applied load. When,
however, the load is sufficiently great to cause partial yield of the beam, these methods give an
estimate for the critical load which is too high. In the present paper the phenomenon of lateral
buckling in deep mild steel beams of rectangular cross-section is studied from both a theoretical and
an experimental standpoint. The paper is divided into three parts.

In part I the critical lateral buckling load is shown to depend on the flexural rigidity of the beam
about its weaker principal axis while the applied load, causing flexure about its stronger principal
axis, is held constant. The dependence of this rigidity on the extent to which the beam has yielded
is calculated, and the results are confirmed by tests on beams of rectangular and circular cross-section.

It is also shown that the critical load depends on the initial torsional rigidity of the beam, defined
as the initial slope of the torque against angle of twist per unit length relation for torsion about
the longitudinal axis of the beam while the applied bending load is held constant.
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B. G. NEAL ON LATERAL INSTABILITY OF

In part II it is first shown that in a beam which has partially yielded the shear force due to the
variation of the applied bending moment along the length of the beam is carried entirely in the
central elastic core of the beam. Using the theory of combined elastic and plastic deformation,
it is then shown that the initial torsional rigidity remains constant at its value for elastic torsion, and
experimental evidence in favour of this conclusion is presented.

Using the results of parts I and II, the conditions causing lateral instability in deep mild steel
beams of rectangular cross-section are determined in part III. For a beam bent by pure terminal
couples these conditions may be deduced directly, but for the cases of beams subjected to central
concentrated loads and of cantilevers a step by step solution of the governing differential equation
is necessary. Experimental confirmation is given for the case of pure bending.

NOTATION

A, A4, overall primary flexural rigidity.
B,B; initial secondary flexural rigidity.

C

M,
M,
M,

M,

S

=

-

NS NIRRNQ N TN

==

————

™R IR R Y

torsional rigidity.

primary bending moment.
secondary bending moment.
bending moment at which yield first occurs.
fully plastic moment.

critical buckling moment.
torque.

shear force.

Young’s modulus.

modulus of rigidity.

total length of beam.

radius of circular beam.
concentrated load on cantilever.

, W,  loads in experimental work.

V4

Y, stresses.
semi-breadth of rectangular bar.
semi-depth of rectangular bar.
lower yield stress.
ratio of upper to lower yield stress.
semi-length of beam with central load.
{total length of cantilever.
length measured along axis of beam.
s/l.
specifies plastic zone in flexure of beam of rectangular section.
specifies unloading zone in flexure of beam of rectangular section.
slope of linear regression line.
B/By = k.p. for secondary flexure of beam of rectangular cross-section.
number of subdivisions of beam in finite difference method.
rth point in finite difference method.

yal

angles used in considering flexure of a circular bar.
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YIELDED MILD STEEL BEAMS 199
¢ angle of twist in torsion.
v critical angle used in flexure of beam of circular cross-section.
y M,, =T J(BC).
K curvature.
T angle of twist per unit length.
F

functions defined for finite difference calculations.

€ small rotation of axes.

7 percentage correction to experimental results.
A flow parameter in Prandtl-Reuss equations.

J finite difference.

s lateral deflexion measured in torsion test.

A finite difference correction.

A,,A,  dial gauge readings.

PART 1. THE INITIAL SECONDARY FLEXURAL RIGIDITY
1. INTRODUCTION

The current methods of design for steel structures are based on the assumption that a
structure becomes unsafe when the yield stress is reached in the most highly stressed member.
However, in highly redundant structures, as typified by steel building frames, the load
causing collapse of the entire structure is usually considerably greater than the load at which
yield first occurs. While at present the allowable load on a structure is usually derived by
applying a factor of safety to the load causing yield, it would be more logical to base the
allowable load on the load causing complete collapse, and considerable economies could be
effected by employing design methods based on the calculation of collapse loads. The
development of such design methods has involved extensive investigations into the behaviour
of beams subjected to loads in the range between the load at which the most highly stressed
fibres yield and the load causing collapse, referred to as the yield range (Baker 1949).
Hitherto, however, it has been assumed that beams loaded in the yield range will not fail
by lateral instability before their full strength is developed in a direct manner under the
collapse load. It has been realized, however, that the allowable loads on long deep beams
loaded within the yield range may be determined by the necessity for preventing secondary
failure by lateral buckling, and the present work is intended to show how the loads causing
lateral buckling for such beams may be calculated. The investigation has been confined
to the case of beams of rectangular cross-section.

2. STATEMENT OF THE PROBLEM

It is well known that a thin deep beam, loaded in one plane so as to cause flexure about
the stronger, or primary principal axis of the cross-section, may fail by buckling laterally out
of that plane. In the ideal case of a beam which is initially perfectly straight and free from

twist, deflexion only occurs in the plane of the applied loads until the maximum bending
26-2
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200 B. G. NEAL ON LATERAL INSTABILITY OF

moment occurring in the beam reaches a critical value, denoted by A,,. Lateral deflexion
and twist then develop simultaneously, and the critical lateral buckling load may be obtained
by calculating the value of the applied load at which it is possible for the beam to remain in
neutral equilibrium in its characteristic mode of buckling in which the lateral displacement
and twist are infinitesimal.

The occurrence of lateral instability is therefore governed by the flexural rigidity of the
beam about its weaker, or secondary principal axis, and the torsional rigidity about its
longitudinal axis, while the applied load remains constant. The former rigidity, referred to
as the initial secondary flexural rigidity, B, may be defined as the initial slope of the bending
moment-curvature relation for flexure about the secondary principal axis while the applied
load remains constant, and asimilar definition may be given for theinitial torsional rigidity,
C. If the length of the beam is L, the value of M,, is given approximately by

M, =7 J(BC), (2:1)

where y is a numerical constant depending on the degree of constraint at the ends of the
beam and the nature of the applied load (Timoshenko 1936). It should be noted that this
expression needs modification when the torsional properties of the beam are appreciably
affected by the degree of restraint against warping of the cross-section at the ends of the
beam, but it has been shown (Timoshenko 1921) that such effects are negligible for beams
of rectangular cross-section.

The problem is therefore to determine the rigidities B and C, which will be expected to
depend on the extent to which the beam has yielded. In part I of this paper it is shown that
the value of B falls off progressively with increase of load in the yield range, and the
reduction of this rigidity has been calculated for the cases of beams of both rectangular and
circular cross-section. Experimental confirmation of the results is given, the work on the
beams of circular cross-section having been carried out with a view to providing additional
evidence in favour of the theory.

In part IT it is shown that the value of C'is independent of the state of stress in the beam,
and in part III these results are used to calculate the critical condition causing lateral
buckling for beams of rectangular cross-section under various types of loading.

3. STRESS-STRAIN RELATION

In the present work, discussion is restricted to mild steel which has been annealed prior
to testing. For such steel, showing a pronounced yield point, the stress-strain relation is
found to take the form indicated in figure 1.

Hooke’s law is obeyed along Oa until the upper yield stress gf; is reached, after which
further straining takes place along bc at a smaller constant stress f;, the lower yield stress,
until strain hardening sets in at ¢. For a given steel the relation for pure compressive stress
is identical with that for pure tensile stress up to the point ¢ where strain hardening begins,
as was shown by Smith (1909), Morrison (1939) and others.

If the stress is reduced after yield has occurred a curved line such as de is followed, but it
was shown by Howard & Smith (1925) that the initial slope of this line is Young’s modulus E,
as indicated. ‘
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YIELDED MILD STEEL BEAMS 201

A number of investigators have found that if several tensile tests on different mild steel
specimens cut from the same stock are performed, the values of the lower yield stress vary
very little from test to test, whereas the values of the upper yield stress show variations which
are quite considerable. On this basis, the view has often been advanced that the upper yield
point of mild steel represents an unstable condition of the material analogous, for example,
to the elevation of the boiling-point of liquids in the absence of nuclei around which bubbles
can form (Nakanishi 1929). However, as pointed out by Smith (1909), and Morrison (1939),
such variations in the observed values of the upper yield stress are caused by accidental
small eccentricities of the applied tensile load, which cause a bending action which is
superposed on the uniform extension due to the axial load. For instance, an eccentricity of

ML ——

stress
o+
o

/
tar 'E /tan' 'E

e
strain

Ficure 1. Stress-strain relation.

only 0-003in. causes elastic bending stresses which are 10 9, of the mean axial stress in
a solid circular specimen of 0-25in. diameter. In such a case yield would be initiated at
the point of greatest stress when the mean axial stress was 10 9, below the upper yield stress.
Owing to the drop of stress in the yielded fibres, a correspondingly greater proportion of the
load would then be carried by the remainder of the section, so that yield would spread
rapidly across the section with a slight increase in load. Thus an accidental eccentricity of
load of only 0-003in. would cause the observed value of the upper yield stress to be nearly
10 9, less than the true value.

It has also been suggested that in cases of non-uniform stress distribution, as, for example,
in the bending of a mild steel beam, yield will begin when the stress at the most highly
stressed point reaches the upper yield value, but that once the yielding process has been
initiated in this way additional material will yield at the lower yield stress. However, the
experiments of Robertson & Cook (1913), and others, have shown that yield always occurs
at the upper yield stress, and the experimental work described in the present paper provides
further confirmation of this point.

It is well known that the occurrence of yield in mild steel is accompanied by the formation
of Liiders lines. It seems probable, as suggested by Muir & Binnie (1926) and others, that
the material within the Liiders lines has undergone a considerable amount of slip, and has
in fact strained to the point ¢ in figure 1. The surrounding material is still entirely elastic,
and is sustaining only the lower yield stress. This elastic material is therefore subjected to
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202 B. G. NEAL ON LATERAL INSTABILITY OF

a stress considerably below the upper yield stress required to cause elastic breakdown.
Further yield as the overall strain is increased must therefore be initiated at points of stress
concentration along the boundaries of the Liiders lines, where there will exist ‘surfaces of
misfit’ between adjacent crystals owing to the discontinuity in the amount of slip that has
occurred.

This interpretation of the yield phenomenon in mild steel has been borne out by the
strain-etch figures obtained by Jevons (1925, 1927) and Nakanishi (1929) for tensile and
bend specimens. The work of Jevons, for example, showed very clearly the spread of yield
zones from the ends of tensile specimens, where yield was always initiated owing to the
stress concentration at the shoulders of the test-pieces.

Acceptance of this physical interpretation of the yield phenomenon implies that the
longitudinal strain in a yielded fibre varies discontinuously along the fibre depending on
whether the strain is considered at a point in a Liiders line or in elastic material. The
relation between longitudinal stress and the average longitudinal strain taken over a con-
siderable length of the fibre will still, however, be as indicated in figure 1. The subsequent
work only depends on the nature of this average relation, and therefore holds true irrespective
of whether or not this interpretation of the yield phenomenon is accepted.

4. BENDING MOMENT-CURVATURE RELATIONS IN PURE BENDING

When an initially straight beam is bent by pure terminal couples applied about a principal
axis of the cross-section, it follows by symmetry that the longitudinal strain varies linearly
across the section with distance from some neutral axis. If the bending moment M, exceeds
the value M, at which the upper yield stress is attained in the most highly stressed fibres, the
distribution of stress across the section will be as shown in figures 2 and 3 for the cases of
rectangular and circular cross-sections, respectively, provided that the outer fibres are not
strain hardened. It is assumed, of course, that A/, has increased steadily from zero.

It may readily be shown (Robertson & Cook 1913) by taking moments about the neutral
axis that the relationship between the bending moment A4, and the curvature «, for the case
of a beam of rectangular cross-section is given by

M, 3 Ky 1
=1+ (1— 2(~--—-1), L=z 4-1
- 1aemEo), B (&)
where the bending moment M} and curvature «, at which yield first occurs are given by
My = § /104 (42)
Ky = ’%—% . (4-3)

The relationships between M; /M, and «,/ky for values of 4 from 1-0 to 1:8 are given in
figure 4, from which it will be seen that, if x exceeds 1-5, equilibrium in the yield range

is unstable.
For a beam of circular cross-section the corresponding relations are (Cook 1931)

msin O‘AAff; = 20, sin 20+ 2(54/;-— 1) sin 2 cos?a, % = COosec a, (4-4)
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YIELDED MILD STEEL BEAMS 203

Ficure 3

F1Gures 2 AND 3. Stress distribution for flexure in the yield range.
[II|| zones of yield.

15 e [_ / 1-0
!
I
!
!
1-4 15 II
; N
/
/
I3 /
. 4l !
14 i
/ r2.
/
!
-2 3. 13 |- Il
Gy
S M / -3
w 1 k
g M,
=0
i > 12 - I/ -4
/
J
5
10 e —
s ——
" 1-6
4 ) 17
09 I-0 3 1 1 3 |
1 . K‘
0 5 20 50, o
Ky
Ky
o8- o9l
Ficure 4. Flexure of a beam of rectangular Ficure 5. Flexure of a beam of circular
cross-section in the yield range. cross-section in the yield range.

---- Prolongation of elastic line; —-— boundary of stable equilibrium,

values of 4
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204 B. G. NEAL ON LATERAL INSTABILITY OF
where M, = Z’quRS’ (4-5)
Ky = gféﬁ (4-6)

The relationships between M, /M, and «,/k, for values of 4 from 1-0 to 1-8 are given in
figure 5, and it will be seen that, if # exceeds 1-5, equilibrium under M, becomes unstable if
the curvature exceeds a critical value. It may readily be shown that the value ¥ of « at which
this occurs is given by

2¢~—sin21ﬁ+6(—§—l——l) sin 2y sin? ¢ = 0, (4+7)
and the locus of the maxima of A, /M, is given by

3msin 3//% = 2 (8 —cot?y) +sin 2y (3 +cot? y). (4-8)

5. INITIAL SECONDARY FLEXURAL RIGIDITY FOR A BEAM OF RECTANGULAR
CROSS-SECTION

Consider now a beam of rectangular cross-section sustaining a primary bending moment
M, applied about a principal axis OX, the state of stress at a cross-section being as indicated
in figure 2. Suppose that an infinitesimal secondary bending moment dA, is applied about
the principal axis OY while M, remains constant, and let there be increments of curvature
dk, and dk, about the axes OX and OY, respectively.

{Y
s dM,,dK,
| ’ P
Ltqudﬁ'ui"r ) g |
’ o T‘_qb pa
(
A5 ) i ( ¥
M,
g 7 7/ d [{‘-\-d,{'

Ficure 6. Secondary flexure of a beam of rectangular cross-section. [ zones of yield due
to M, alone; % zones of yield due to dM,; EZA zones of unloading.

The state of stress in the beam will now be as indicated in figure 6. There will exist a
straight line OP through the origin along which the longitudinal strain remains unaltered,
the slope of this line being dey, pd

b =g (5-1)
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YIELDED MILD STEEL BEAMS : 205

It will be shown that ¢, as defined in figure 6, is always less than 1, so that two zones will
form in which the strain is reduced after yield due to A4, has occurred. These unloading zones
may be triangular in shape, as in figure 6, or trapezoidal, depending on whether p is less
than or greater than ¢. Thin triangular zones in which the increment of longitudinal strain
due to dk; and dk, induces yield will also form, as shown. Each of these zones is a triangle

with a base of length 5(1+¢) and a height of (%i) pd 4/;‘ .
1

(a) Triangular unloading zones

Consider first the case in which triangular unloading zones form. Small changes in the
primary and secondary bending moments may be expected to arise in the following three
ways.

(1) The small changes of strain in the elastic core.

(2) The finite drop of stress (#—1) f; in the zones of further yield.

(3) The small reductions of strain in the unloading zones.

Since there is no change in the primary bending moment,

dxk.
bd bT: b
f W Eydi,dy— (—1) fL%b(H-q)(—lﬂ) 2d %0y f ‘ f - E(yde,—xdiy) ydrdy — 0.
0 9 Kl pd -'/71;?: (5'2)
Krp(14q)[b—3b(1+9)]

Ky

b
Also,  yabd, [ 2pdBxdeyds—}(n—1)f, (* 1) e
0

dk

2

b b
+E dK‘f 4 (xdiy—ydky) xdxdy. (5-3)

ba Y yg.,

Relating E to f; by considering the ratio of stress to strain at the boundaries of the elastic
core before secondary flexure commences, we have

ufy = Epdx,. (5-4)
Evaluating the elementary integrals in equation (5-2), and using equation (5-4), it may
readily be shown that

4
20~ 1 — .
9q (3ﬂ 1)+2q 1=0, (5'5)
~ J(12u—8u%) —p )

the positive value of the radical being selected since p must be greater than zero, and is less
than gq.

¢ is thus a function of x alone when triangular unloading zones form. Values of ¢ for values
of y between 1-0 and 1-5 are shown in figure 7, and it will be seen that ¢ does not exceed
1 unless y is greater than 1-5. This possibility need not be considered, however, since stable
equilibrium under the primary bending moment alone is not then possible.

Remembering that B = dM,/dk,, and noting that the elastic flexural rigidity for secondary
flexure about the axis 0Y, denoted by B, is 4 Edb3, it may be shown from equation (5-3) that

7%:§?<11$9)2[(%—1)q(2~9)+1]. (57)

VoL. 242. A. 27


http://rsta.royalsocietypublishing.org/

a
FA
A

/%

THE ROYAL

SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A \
|

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A A

OF

)

y
S

OF

Downloaded from rsta.royalsocietypublishing.org

206 B. G. NEAL ON LATERAL INSTABILITY OF
Eliminating x4 by using equation (5+5) it is found that

B _(+q9)* _
—BTEW 24q2 p*kﬁ’

(5-8)
where k = (14¢)*/244%is a function of u alone, since ¢ is given in terms of 4 by equation (5-6).

(b) Trapezoidal unloading zones

When p is greater than ¢ the unloading zones are trapezoidal in shape. A similar analysis
to the above leads to the result

EB" - %%ﬁx [4(* —2p+3) +-4gp(p—2) + 6p%], (59)
E

where ¢ is the solution of

12
(5 -9)pr 3]+ (2 8)p+ap ]+ (B —e)pr—ep=0.  (510)
7 7 7
0 ~ 16 .
//
triangular i g
oal unloading zones ol
[o85)
’
\ P \
4 ’ trapezoidal trapezoidal
osr 7 unloading zones ool unloading xones
///
q .

\\
g :
values of
=

04 % -0 E
ya -t O
. 2
’ > 5
, )
,/ 15 .%
02 +- .
2 ’,’ -2 o2 triangular >
/ unloading zones
s
7/ ]
s
//
o 1 1 1 ! 1-0 Q 1 ]
0 oe 04 06 o8 %] 10 20 25 30
b Ky /Ky

Fieure 7. Relations between ¢ and p.

F1cure 8. The initial secondary flexural

rigidity for a beam of rectangular
cross-section.

Relations between ¢ and p for values of 4 from 1-0 to 1-5 according to equation (5-10) are
given in figure 7, and in figure 8 relations between B/B,, and the non-dimensional curvature
K1/ky = 1/p according to equations (5-8) and (5-9) are shown.

It is of particular interest to note from figure 8 that a discrete drop in the secondary
flexural rigidity takes place for values of x greater than 1 as soon as yield occurs in the most
highly stressed fibres. This discrete drop has an important bearing on the nature of the
lateral instability phenomenon in beams of rectangular cross-section, and is a consequence

of the finite drop of stress (#—1) f;, occurring in the thin triangular zones of yield which form
at the start of secondary flexure.
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YIELDED MILD STEEL BEAMS 207

6. INITIAL SECONDARY FLEXURAL RIGIDITY FOR A BEAM OF CIRCULAR CROSS-SECTION

The state of stress at any section of a beam of circular cross-section sustaining a primary
bending moment in the yield range is indicated in figure 3. If an infinitesimal secondary
bending moment dM, is applied about the secondary principal axis OY while M, remains
constant, causing increments of curvature dk; and dk, to occur about the axes OX and 0Y
respectively, the state of stress will change as shown in figure 9.

/
.
M

I
KitdK,

FiGure 9. Secondary flexure of a beam of circular cross-section. ||||| zones of yield due to
M, alone; %) zones of yield due to dM,; zones of unloading.

Unloading zones will form provided that « is less than £, and it is assumed that £ is less
than }7. An analysis similar to that described in §5 then leads to the result

B _ sina . 4 N 0 B ]
WB; =a-+f+ S~in—ﬁsm (oc—l-ﬁ)—i—(gﬂ 1) sin*a(cota+cotf)? (2cota—cotf),  (6-1)
where <x+ﬁ—ggs—gqin (a+p) +3tan/5’(—4— —1) sinfa(cota+cotf)? = 0. (6-2)
cosff’ 3u

Relations between a and £ according to equation (6-2) are shown in figure 10 for values
of u from 1-0 to 1-8, and for values of « between 0 and 37, describing the complete yield range.
It will be seen that the values of # exhibited are all less than 17, as assumed. When g exceeds
1-5, however, a is only less than f for values of « greater than a critical value ¥, dependent
on u. This critical value may be obtained by putting @ = f = ¢ in equation (6-2), which is
at once seen to yield equation (4-7), which determines the boundary of stable equilibrium
under M, alone. It is therefore unnecessary to carry out a further analysis for those cases in
which unloading zones fail to form, as the equilibrium under A4 is then unstable.

Relations between the curvature ratio dk,/dk, = cotf and «,/ky = coseca are given in
figure 11 for values of x for 1-0 to 1-8, and in figure 12 the corresponding relations between
B/Bj and «,/ky are shown. '

The equation to the boundary of stable equilibrium in figure 12 may be determined by
putting & = £ = ¥ in equation (6-1), and eliminating x by means of equation (4-7), giving

37 jf— — 29(3 —cot2y) +sin 24 (3 - cot? ). (6:3)

27-2
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Reference to equation (4+8) then shows that this boundary equation may be put in the very
simple form B M
B .
B, Mysm . . (6-4)
75 a:[a’

values of 4 1o 1112 13 14 151617 18

X

LU

«1 60
2
> ' /B
ok (deg.)
=
= O 30
=w
=17,] 15
52
=0
=
Og 6 o ! | ) ! | !
8(,) [e] 15 30 45 60 75 20
=% o (deg.)
- Ficure 10. Relations between o and .
30~
-0
&
> stable equilibrium
5 under M| alone
08}~
=,
[
4 © 6} o -
" g B oe s
y 3 [
_gF /\7‘ I3 < E -3 4
<€ \/\ﬂ > 4 -E
~y 2 <
| [ ~ -5 >
— 1 ) b
< o unstable equilibrium
>., >'* under M, alone
O H o2l
=)
e
=,
I O o 1 | 1 t
[_( A 30 0 -5 20 25 30
Ky/Ky ‘ Ki[Ky
Frcure 11. Curvature ratio for a beam Frcure 12. Initial secondary flexural rigidity
of circular cross-section. for a beam of circular cross-section.

The significance of this simple expression may be appreciated by considering the special
case in which the equilibrium under 44, is neutral. In this case a small increase in primary
curvature, or in other words a small decrease in the depth of the elastic core, leaves the
primary bending moment A4, unchanged.
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YIELDED MILD STEEL BEAMS 209

Consider now the case of neutral equilibrium under a primary bending moment M,
applied about the axis OX, as shown in figure 13, producing elastic-plastic boundaries 4B
and CD parallel to OX. If these boundaries are changed to 4B’ and CD’, parallel to an axis
OX’ produced from OX by a small anti-clockwise rotation ¢, then by definition of neutral
equilibrium the fresh stress distribution gives rise to a moment M, about the axis 0X’, the
curvature about this axis being say «, -+ dk; . To the first order of small quantities this moment
may be resolved into a moment A about OX together with a moment M,¢ about OY.

Y'Y

.ll"""“ """“h

Freure 13. Neutral equilibrium.

This may therefore be considered as a case of secondary flexure about OY with the
primary bending moment about OX held constant at M,. We have

dM, = M;e,
dry = (K1 +dk,) € = Kky6,
M, . M, Mk, My, M,
so that E—B-Z—MYKI P —MsmwBE,

agreeing with equation (6-4).

Thus when the equilibrium under A4 is neutral the condition that the primary bending
moment remains constant to the first order of small quantities is fulfilled when the unloading
zones just vanish, so that ¢ = f = ¢.

7. EXPERIMENTS ON BEAMS OF RECTANGULAR CROSS-SECTION

The test-pieces used in this experimental work were of nominal 4 X 1in. rectangular cross-
section, faired at their ends by radii into £ in. diameter ends on which 1in. of B.S.F. thread
was cut. Details of the test pieces are given in figure 14.

4in.rad. L. 4in.rad. :
/ | et \1’__1 2 in.dia.
i - — — gy I

i e 8-4in- Lid b

_fod. " 4in.rad.
jAm j/_‘.‘ 2 india.
e

)i 41 8-4in. ! ;4.1J.|z'
—

13-221n.

Ficure 14. Test-pieces of rectangular cross-section.
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After machining and final grinding the test-pieces were annealed in sealed steel tubes
containing an inert atmosphere of argon. The temperature was maintained at 850° C for
10 min., and the cooling rate was such that the temperature was reduced to 200° C after
a further hour.
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YIELDED MILD STEEL BEAMS 211

The composition of the steel is given in table 1.

TaBLE 1
element C Si Mn Ni Cr P S Al
percentage 0-27 0-26 0-70 nil 0-13 0-05 0-027 0-06

The apparatus used for the tests was as shown in figures 15 and 16. The ends of the test-
piece were held in end-fittings, details of which are given in figures 17 and 18. It will be seen
from these figures that each end of the test-piece was screwed into a frame which was

< mounted on a pair of ball journals whose axes were horizontal. These journals were in turn
—
> |
olm . | L
=z = Nesing) nnls M Ml ([T
— NN Nk RN IRN77Z.%
= A W2 NN NN
T O S AN
Hw S
W, N 747"7‘
- ! ¥ VAT
5% g@\\\g | \§f [
E— g ) J ) — -‘ e aish - A l
| - P A iy ‘i
5 2 I Mﬁ/jjzzf\\f?ﬂ ﬂ?
DA ‘Ad
22
- £ ;
I 2
(" ! f Z g I R T i e T e i e
( ( J’V"\ !"TL
| ! |
oA N —
NS NN ) ]
7 A ) T
. suiy ! Ll “ a @)
e TR Y 1 h
N = 123 in: - Sin. ~
; — Ficure 17 Ficure 18
O H Frcures 17 anp 18. End-fittings.
[~ =
)
E 8 mounted in another frame which was free to rotate about a vertical axis. This freedom was
— o secured by means of a further pair of ball journals together with a thrust bearing to take the
vertical load on the end-fitting. The ball journals were provided in order to prevent twist
about the longitudinal axis of the specimen. To ensure that no axial force could develop,
i one of the end-fittings was mounted on two longitudinal rows of balls.
0

Loading levers were bolted to each end-fitting so that their axes were parallel to the axis
of the specimen. The primary bending moment was applied through these loading levers
by means of buckets loaded equally with lead shot and supported on horizontal knife-edges,
the lever arm being 10in. The secondary bending moment was also applied through the
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212 B. G. NEAL ON LATERAL INSTABILITY OF

loading levers by means of two lengths of pianb wire, passing over pulleys mounted on small
ball races, and supporting buckets loaded equally with lead shot; the lever arm again
being 10in.

Three standard Mercer dial gauges of the plunger type, capable of reading to the nearest
0-0001in., were employed for the measurement of deflexions in both the horizontal and vertical
planes, being spaced 3 in. apart. Since it was necessary to employ small increments of load,
particularly during secondary flexure, the deflexion of a central gauge relative to the two
outer gauges was not large enough to be taken as a measure of the curvature. As the deflexion
of each gauge was mainly due to the curvature of the central portion of the test-piece of
constant cross-section, the sum of the readings of the three dial gauges in one plane was taken
as proportional to the curvature, after a correction of about 10 9, due to the faired ends of
the test-piece and the screwed grips, derived from preliminary calibrations, had been made.
A further small correction to the deflexions in the horizontal plane was due to a small lateral
deflexion of each end-fitting during secondary flexure, recorded by the two further dial
gauges shown in figure 16. As slight variations in the values of the yield stresses and the
dimensions of the cross-section along the length of the specimen would cause non-uniform
curvature during flexure in the yield range, the method of summing three dial gauge
readings has an advantage in indicating closely the mean curvature along the test-piece.
If, for instance, the curvature varies linearly along the test-piece the mean curvature is
measured exactly in this way.

Despite the use of screwed grips, no trouble was experienced with backlash, presumably
because the threads were always sustaining a heavy load arising from the primary bending
moment. Friction in the thrust bearings was found to correspond to a coefficient of friction
of about 0-007, so that with a primary bucket load of about 601b., as used in the tests, the
friction torque was about 0-451b.in., acting about the secondary axis. Since increments
of secondary bending moment of 10 or 201b.in. were employed in the tests, this torque was
small but not negligible. Its effect was minimized by applying a momentary light pull to
the secondary loading wires before the start of secondary flexure, so that the friction torque
acted in the same sense throughout the test.

The procedure adopted during each test was to apply successive 501b.in. increments of
primary bending moment until it became evident that the yield stress had been reached
in the outer fibres. Smaller increments of about 101b.in. were then applied until secondary
flexure began. Successive increments of 10 or 201b.in. were then made in the secondary
bending moment, while the primary loads were left unaltered.

Four tests, designated R.1 to 4, were carried out. The relation between the bending
moment and curvature during the primary flexure in the yield range for a typical test, R. 4,
is shown in figure 19. In this figure the primary bending moment 44, is shown plotted against
A, , where 4, is the sum of the readings of the three primary dial gauges corrected as already
described.

A theoretical curve, calculated in accordance with equation (4-1), is shown in the figure.
In fitting this curve, two parameters were available for selection, which may most con-
veniently be specified as M, and u. These parameters were determined with an accuracy of

© +0-5 9% by making the theoretical curve pass through the last observation taken during
primary flexure and then adjusting to give the best degree of fit with the other observations.
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YIELDED MILD STEEL BEAMS 213

From the theoretical curve the value of /¢, at the commencement of secondary flexure
could readily be calculated. The predicted values of B/By and dk,/dk, during secondary
flexure could therefore be read off from the curves in figures 7 and 8. These values, together
with the corresponding values of the upper and lower yield stresses, are given in table 2 for
each test.

600 [ O

580 - /9 s

(Ib.in.)

/ | ! I |
400 500 ‘600 4 700
A; (in. x 103)
Ficure 19. Primary flexure, test R.4.
TABLE 2
L 752 .

test (tons/sq.in.)  (tons/sq.in.) Y22 Ky/Ky B/By dr, [dk,
R.1 185 23-1 1-25 1-10 0-81 0-16
R.2 17-8 23-2 1-30 1-32 0-66 0-28
R.3 18-0 23-0 1-28 1-38 0-65 0-28
R.4 17-8 235 1-32 1-54 0-56 0-36

The observations taken during secondary flexure with the primary bending moment held
constant are given in figures 20 to 23. In these figures the secondary bending moment A4, is
shown plotted againstboth A, and A,, A, being the sum of the readings of the three secondary
dial gauges corrected as previously described.

For elastic secondary flexure the slope of the linear relation between M, and A, could be
calculated from a knowledge of the dimensions of the specimen and the proportions of the
apparatus. The predicted initial slopes of the relations between M, and A, and A, during
secondary flexure were then calculated from the values of B/Bj and dk,/dk, given in table 2.
Straight lines with these predicted slopes, together with the relation between A, and A, for
elastic flexure, are given in figures 20 to 23. It will be seen that an excellent degree of agree-
ment exists between the experimental observations and the theoretical predictions.

Test R. 1 is of particular interest in confirming that a discrete drop in the value of the
secondary flexural rigidity occurs as the upper yield stress is attained in the outermost fibres.
Although the value of «, /k, was only 1-10, a predicted drop of 19 %, in the secondary flexural
rigidity was confirmed with considerable precision.

A few attempts were made to carry out further tests at values of , /ky in the neighbourhood
of 2. It was found, however, that the primary curvature became markedly non-uniform for
such values of the mean curvature, owing to small variations in the yield stresses and
dimensions of the specimens. '

Vour. 242. A. 28
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Application of an increment of load during flexure in the yield range is followed by creep
of the deflexion readings. Typical creep curves obtained during test R.2 are shown in
figures 24 and 25. During both primary and secondary flexure the deflexions which take

40 o . + 40 ©
F / //,’ [- 1/ ///
/, / . ,/
e ; et
30 1 0] ,//+ 30 I~ [o] ,+
’ 4 / ///
/, 1 e
' e
MZ o~ | © ’ ot 20 [ Q /+
(Ib.in.) ' o / S
’ | ‘ /
|/ /S
10 ‘/0 O+ o @ I
4 s
//// I/ //,/
I,’ ///
1 1 | | 1 0 1 ! | | .
%5 40 80 120 6o | 200 o 40 80 120 160 200
Ficure 20. Test R. 1. Ficure 21. Test R. 2.
o+ 31 / o e +
e
/ 4
B '
. 7
/
//
20 I~ . 3
v
] / . y
(Ib.in.) / /7
7
e
o P /“'V/
1/
///
7 //
//
. . . 1 1 1 1 r
o5 s P s 4;0 500 %, 40 80 120 160 200
A (in. x 103)
Ficure 22. Test R. 3. Ficure 23. Test R. 4.
Ficures 20 To 23. Secondary flexure: tests R. 1 to 4.~ —theoretical initial slope dM,/dA, ; - - - theoretical
initial slope dM,/dA,; —— elastic secondary rigidity; © observations of A;; + observation of A,.
80 [~
— | © ~ 60
x ©° o X
g g +
& ° = + +
<1~ 40 [~ < 40 *
Gy © )
© +
o e &
) =
§ 20 [~ ,_g 2o I~ o
3} [0} Q o o
(Ii (o]
| L 1 1 1 1 o I ! ! { 1 !
) 2 4 6 8 ) 12 °Q 2 4 6 8 10 i2
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Ficure 24, Test R.2. M, increased Frcure 25. Test R.2. M, increased
from 570 to 580 lb.in. from 20 to 30 Ib.in.

© observations of A;; + observations of A,.
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YIELDED MILD STEEL BEAMS 215

place instantaneously on the application of a load incrementare calculable on the assumption
of wholly elastic behaviour. The subsequent plastic flow which then occurs takes several
hours for completion.

It will be seen from figures 24 and 25 that the observations taken during the plastic flow
lie on curves which are roughly of exponential form. A tentative physical explanation of the
nature of the flow process may be given with reference to the formation of Liiders lines in
the yielded regions. During flexure in the yield range, Liiders lines will have penetrated from
the outer surface of the beam to the boundary between the elastic and yielded material.
When the beam is in equilibrium under the applied loads it may be supposed from the
discussion of the nature of Liiders lines in § 3 that the tips of the Liiders lines on this boundary
will be causing a stress concentration which is just equal to the ratio of the upper to the lower
yield stress. On the application of an increment of load this stress concentration will increase
by a small amount, causing a tendency for the Liiders lines to penetrate further into the
elastic core of the beam until equilibrium is again attained. If all the Liiders lines were of
equal size, it might be supposed that there was an equal probability of each one completing
its further penetration in any given interval of time, and in this case the relation between
the overall change of curvature and time would be of exponential form. In actual fact the
creep observations cannot be fitted exactly by curves of exponential form, and the dis-
crepancy may be ascribed to the fact that the Liders lines vary widely in size.

8. EXPERIMENTS ON BEAMS OF CIRCULAR CROSS-SECTION

The test-pieces used in this experimental work were nominally of {in. diameter cross-
section, faired at their ends by radii into £ in. diameter ends on which 1in. of B.S.F. thread
was cut. Detailed dimensions are given in figure 26.

2in.rad. 2in.rad.
1. .
fzindia. L»—r-%in.dia.
- ~___1_
"

-lli‘n_.l;—‘_ ! ssin: _:_HI‘

-Tiin. O-7lin.
T {lin: B

Ficure 26. Test-pieces of circular cross-section.

The steel was drawn from the same stock as used for the test-pieces of rectangular cross-
section, described in § 7, and the test-pieces were subjected to a similar heat treatment after
machining and final grinding. The apparatus for the tests was identical with that used for the
beams of rectangular cross-section.

Six tests, designated C.1 to 6, were carried out. The bending moment ] during the
primary flexure in a typical test, C. 6, is shown plotted against the sum of the three primary
dial gauge readings A, in figure 27. A theoretical curve calculated in accordance with
equation (4-4) is also shown.

The value of «,/«y at the commencement of secondary flexure then being known, the
predicted values of B/B;, and dk, /dk, during secondary flexure were read off from the curves
of figures 11 and 12. These values, together with the corresponding values of the upper and

lower yield stresses, are given in table 3 for each test.
28-2
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216 B. G. NEAL ON LATERAL INSTABILITY OF

The observations taken during secondary flexure are plotted in figures 28 to 33. In these
figures straight lines corresponding to the predicted initial slopes of the relations between
M, and A, and A, are also given, the slopes of these lines being calculated from the values of
B/B and dk,/dk, given in table 3. It will be seen from these figures that an excellent measure
of agreement exists between the experimental observations and the theoretical predictions,
although in a few cases the observations of the primary curvature increments are somewhat

erratic.
850~
-0
f”v’.—’
800~ . Peg -
//
//d
&
M 1 750 [~ /
(Ib.in.) e
/
/
/
wf
My
650 1 1 1 1
400 500 600 700 ‘800
A, (in. x 103)
Ficure 27. Primary flexure, Test C.6.
80r- ° .+ 80F [} s
/ /// / ///
60 e ’ 4’/ / /’/
I sor - /° P 60t / ® A
so0fo a0~ fo ' a0 ,e/ A
M, | / o / e
(lb.in.) ' / ’// / ,//’/
20p 20~/é i 20t /e A
/ //// , y ///
L | 1 ) | 1 1 1 1 ) 1 1 1 . | L ;
09 10 20 30 20 °9 10 20 30 20 50 60 90 10 20 30 20 50 60 70
Freure 28. Test C. 1. Ficure 29. Test C.2. ' Ficure 30. Test C. 3.
80 / e} e +
60 / o ,//-(- 60 / o] ,,+ 60 // ‘0+//
B ’//’ L . ’,’ B g -{//;
M2 40 ,/e /,+ 40 / /?,,+ 40 . / L
(lb.ln.) / // / //a //,/z
20} / g 20l /cg,:l/ sol- /;}o
7 ) 1 1 ! 1 1 | al I 1 1 1 | ! ! i ! ! L ]
0 0 10 20 30 40 50 60 70 o 0 10 20 30 40 50 0 0 10 20 30 40 50 60
A (in. x 103%)
Freure 31. Test C. 4. Ficure 32. Test C. 5. Frcure 33. Test C. 6.
Ficures 28 1o 33. Secondary flexure: tests C. 1 to 6. —-— theoretical initial slope dM,/dA, ; ---- theoretical

initial slope dM,/dA,; elastic secondary rigidity; © observations of A;; + observations of A,.
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YIELDED MILD STEEL BEAMS 217
TABLE 3
L ML
test (tons/sq.in.)  (tons/sq.in.) 2 Ky/Ky BBy dk, [dx,
C.1 — S — 1-3% 1-05 0-99 0-04
C.2 186 246 1-32 1-35 0-89 0-27
C.3 18-5 246 1-33 1-59 0-80 0-45
C.4 18-9 24-4 1-29 1-72 0-77 0-50
C.5 18-6 245 1-32 176 0-74 0-57
C.6 18-6 248 1-33 2-00 0-66 0-73

* This value of # was assumed as only one observation was made in the yield range.

The sensitivity of the primary curvature to changes in the value of M, arising from small
variations in the dimensions of the cross-section and the values of the yield stresses, was
somewhat smaller than in the case of beams of rectangular cross-section. Thus while the
highest value of |/« attained during the series of tests on beams of rectangular cross-section
was 1-54 in test R. 4, it was possible in test C. 6 to continue the primary flexure until «, /«;
was 2-00.

PART II. THE INITIAL TORSIONAL RIGIDITY

9. INTRODUCTION

In part I of this paper it was shown that the prediction of the critical load causing lateral
instability in a beam involved a knowledge of the initial torsional rigidity of the beam. This
rigidity may be defined as the initial slope of the relation between the torque and angle of
twist per unit length for torsion of the beam about its longitudinal axis while the applied
bending load is held constant.

In the present paper the value of this rigidity for mild steel beams subjected to bending
loads sufficient to cause partial yield is discussed. As a consequence of the theory of combined
elastic and plastic deformation, it is shown that the initial torsional rigidity may be expected
to remain at its elastic value, irrespective of the extent to which the beam has yielded,
provided that there are no shear stresses existing in the yielded regions of the beam. This is
clearly true in the case of a beam bent by pure terminal couples, but it is shown in a pre-
liminary analysis that this is also the case when the bending moment varies along the length
of the beam, so that a shear force exists. In this case the shear force is carried entirely by
a system of shear stresses in the central elastic core of the beam.

10. THE DISTRIBUTION OF SHEAR STRESS

Consider first a beam of rectangular cross-section, and suppose that at any section there
exists a bending moment M, and a shear force F, as indicated in figure 34, it being assumed
that M, is sufficiently great to cause partial yield. It will be assumed that the stress system is
two-dimensional, so that the only stress components arising are the normal stresses ¥, and
Z, and the shear stress Y, adopting the notation of Love (1920).

In the yielded regions some function of the stresses remains constant. Assuming, for
example, the von Mises-Hencky criterion for yield, that the strain energy due to change of

shape remains constant, Y2-Y,Z, 1 221372 = f2, (10-1)

where f; is the lower yield stress in pure tension or compression.
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The two equations of equilibrium are

Y, 9, _ .
Y, 0Z,
6y+(?z 0, (10-3)

Ficure 34. Axes and notation. ||||| zones of yield,

and the boundary conditions at the outer surface of the beam are ¥, =Y, =0, Z, = f;.
By differentiating equation (10-1) it may be shown that

0Z,(y T\ _ 0, Y YOY,

Z: 4

(?Z( Y) 0;3(1 Y)+6£’9_Y_0, (10-5)

0z \*"Z Z) 57 3z

Z

If the length of the beam is L and its depth 24 it follows from the form of equations (10-2)
and (10-3) that in comparison with Z_, ¥, and Y, are of the order of magnitude of d/L and
d2/L2, respectively. The last two terms in equation (10-5) are thus both of the order of d2/L? as
compared with the first term. It therefore seems justifiable to neglect these terms in equation
(10-5) in comparison with the first, and it then follows that dZ,/dz is zero. From equation
(10-3), 0Y,/dy is then also zero.

A similar argument in connexion with equation (10-4) shows that dZ,/dy is also zero.
Remembering that on the outer surface of the beam Y, = 0 and Z, = f;, it will be seen that
to a close degree of approximation the shear stress Y is zero throughout the yielded regions
and the longitudinal normal stress Z, is equal to f; in these regions.

A similar result is obtained if other criteria for yield, notably the Guest-Mohr hypothesis
that the maximum shear stress remains constant, are assumed. The argument may be
extended to include cases in which the transverse shear stress X, exists, as, for example, in
the case of a beam of circular cross-section, and also cases in which the load is distributed
along the length of the beam.
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11. COMBINED ELASTIC AND PLASTIC DEFORMATION

It has been postulated independently by Prandtl (1924), and Reuss (1930), that each
component of strain at any point in a yielded body may be regarded as the sum of an elastic
strain, calculable from the stresses in the usual way, and recoverable upon removal of the
load, and a plastic strain which develops under the influence of the applied stress system in
accordance with the usual laws of plastic flow (Nadai 1931). When an increment of load is
applied the stresses and strains change instantaneously in accordance with the elastic laws,
and the material then flows plastically in a manner governed by the changed stress system.
This assumes that the increment of load causes the body to remain yielded, so that the stress
components must continue to obey some criterion for yield, such as the von Mises-Hencky
or Guest-Mohr law. Ifthis condition were not fulfilled, the material would unload elastically.
In many theories of plastic deformation it is assumed that the elastic components of strain
can be neglected, but this assumption cannot be justified when elastic material exists in
conjunction with the plastic material, as in the case of the flexure of a beam in the yield range.

As a consequence of the above considerations, the differential relations between shear
stress and shear strain in a yielded body have been shown to be (Hill, Lee & Tupper 1947)

Gde,, = dY,+d\Y,, (11-1)
Gde,, = dZ,+d\Z,, (11-2)
Gde,, — dX, +d\X,, (11-3)

G being the modulus of rigidity and A being a non-dimensional parameter expressing the
degree of plastic flow.

Suppose now that a beam, bent within the yield range, is subjected to a small torque about
its longitudinal axis. In the yielded regions the shear stresses are negligibly small, so that the
above equations, in particular (11-1) and (11-2), reduce to the ordinary elastic relations
between shear stress and shear strain. The equation for equilibrium in the direction of the
axis 0Z is

0z, oY, 07, .
8x+0y+3z =0 (114)

and it has been shown that dZ,/dz is negligible.
The problem of the elastic torsion of a prismatic bar is governed by the equations

Gde,, = dY, | (11-5)
Gde., = dZ,, (11-6)
iZ, aY, .

and the above argument shows that these equations also apply in the yielded regions when
the applied torque is small. It therefore follows that the initial torsional rigidity for a beam
bent within the yield range remains at its elastic value. A similar observation has been made
by Shepherd (1948) in connexion with the torsion of a thin-walled tube strained in tension
beyond the elastic limit.
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12. EXPERIMENTAL DETERMINATION OF INITIAL TORSIONAL RIGIDITY

(a) Beams in pure bending

Since it was anticipated that beams tested in torsion while sustaining bending moments
in the yield range would behave elastically under small applied torques, it was not con-
sidered necessary to ensure uniformity of yield properties by careful heat treatment.
Accordingly ordinary black mild steel bar was used in the tests to be described. Tests were
carried out on a bar of rectangular cross-section, of nominal dimensions 1 x §in., and a bar
of circular cross-section, of nominal diameter }in. It will be convenient to describe first in
detail the tests carried out on the rectangular section bar.

(1) Tests on a bar of rectangular cross-section

The apparatus used for these tests is shown diagrammatically in figure 35. A 15in.
length of the bar was welded in a vertical position to a horizontal baseplate. Across the top
of the bar was welded a loading lever, through which the bar could be subjected to a pure
bending couple about its weaker principal axis and also to a pure torsional couple. These
couples were applied by means of loading wires and pulleys as indicated in figure 35, the
loads W] and W, consisting of buckets loaded with lead shot. The lever arms for the bending
and torsion loads were 18:3 and 17-7 in., respectively.

J--«Z
4

H

V7

Ficure. 35, Apparatus for torsion tests on beams in pure bending.

mirrors

The changes of curvature and twist under load were measured by means of the four small
plane mirrors 1, 2, 3 and 4, whose holders were fastened to short lengths of copper wire
soldered to the bar, the distance between each pair of mirrors being 4 in. The small rotations
of each mirror about a horizontal and vertical axis were measured by viewing a scale with
45 in. graduations through a telescope by reflexion from the mirror, the distance between
each mirror and scale being about 10 ft.

Four torsion tests, designated A to D, were carried out. In each of these tests the bending
moment was held constant while the torsion loads were increased by equal increments of
11b. from 0 to 141b., and then removed. In tests A and B the section was wholly elastic,
whereas in tests C and D the section had partially yielded. It was found that upon removal
of the torsion loads the curvature had changed very little even in these latter tests, so that it
was possible to proceed with the flexure after removing the torsion loads. The observations
of bending moment and curvature in the yield range could be analyzed as described in part I,


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

a
N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

YIELDED MILD STEEL BEAMS 221

the difference between the vertical scale deflexions of mirrors 1 and 2 being taken as pro-
portional to the curvature. For the tests C and D the ratio p of the width of the elastic core
of the section to the total width was calculated, the values being 0-93 and 0-60 respectively.
The values of the upper and lower yield stresses deduced from the observations were 25-6 and
20-5 tons/sq.in. respectively.

The maximum torsional couple was 2481b.in. Assuming the elastic stress distribution, the
maximum shear stress induced was therefore 3-0 tons/sq.in., occurring at the centres of the
longer faces of the beam, where yield had occurred in the tests C and D. There was, however,
no sign of creep in the torsion readings during these tests, and on removal of the torsion
loads the permanent set in twist was negligible, showing that no appreciable amount of
plastic flow had occurred.

A typical set of readings during a torsion test is given in table 4 below for test C, the
entries in the table being the difference between the horizontal scale deflexions for each
pair of mirrors.

TABLE 4
W, Ib. 0 1 2 3 4 5 6 7
mirrors 1-2 in. 0 0-10 0-20 0-31 0-40 0:52 0-61 0-71
mirrors 3—4 in. 0 0-:09 0-19 0-29 0-39 0:51 0-58 0-69
W, 1b. 8 9 10 11 12 13 14
mirrors 1-2 in. 0-80 0-91 1-01 1-11 1-23 1-:33 144 0-01
mirrors 3—4 in. 0-78 0-88 0-98 1-10 1-20 1-29 1-40 0-00

Within thelimits of accuracy of the observations the relationship betweenload and deflexion
was linear. The ordinary statistical method of fitting a linear regression line (Fisher 1941)
was therefore used to calculate the best possible estimate m of the deflexion per 1b. of load,
together with the variance of this estimate, treating the load as the independent variable.
If s denotes the distance between each pair of mirrors and the corresponding scale, the twist
occurring in the 4in. test section between each pair of mirrors is obtained by dividing the
entries in table 4 by 2s. The torsional rigidity C was therefore 17-7(1—7#) 2s4/m lb.in.2,
where 7 denotes a small correction to the value of the applied torque due to the curvature of
the specimen under load. Values of the torsional rigidity calculated in this way, together
with the corresponding values of m, s and # are given in table 5.

TABLE 5
mean value of
Cx10-% C'x 10~ for
test 7 % mirrors m (in./1b.) s (in.) (Ib.in.2) each test
A 0 1-2 0-1081 116-3 1-525 1-532
34 0-1049 113-8 1-538
B 1-85 1-2 0-1038 114-4 1-534 1-529
34 0-1028 112-5 1-523 2
C 3-94 1-2 0-1022 113-6 1-514 1-529
3-4 01000 1133 1-543 ©
D 541 1-¢ 0-1019 116-6 1-535 1-527
34 0-1001 113-3 1-519

The mean of the values of the torsional rigidity obtained from the two pairs of mirrors in
each test is given in the final column of table 5, and it will be seen that there is very little
variation between these values for the different tests. The standard error of each individual

Vor. 242. A. 29
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observation of the torsional rigidity was estimated from the statistical analysis as 0-0076 x 103,
so that the standard error of the difference between any two of the mean values in the final
column of table 5 is also 0-0076 x 105 (Fisher 1941). The greatestdifference isbetween test D,
in which 40 9%, of the cross-section had yielded, and the wholly elastic test A, this difference
being only 0-33 9%, . The probability that this difference is due to errors of random sampling
is about 50 9%, , so that there is no reason to suppose that the torsional rigidity changes when
partial yield in bending has occurred. Ifin fact there is a change, it may be concluded to be
extremely small.

Presuming therefore that all the eight measurements of the torsional rigidity are expected
to be the same, it is possible to consider whether the experimental technique was satisfactory
by examining whether these eight values show a greater degree of scatter about their general
mean than would be expected from the fact that each value has a standard deviation of
0-0076 x 10°. The standard error of the deviations of these eight measurements from their
general mean, obtained by summing the squares of the deviations, may be estimated as
0-010 x 10% and although this exceeds 0-0076 x 10 the usual test of significance (Fisher
1941) shows that such a difference is well within the limits of reasonable expectation. It
may therefore be concluded that there is no reason to suspect any flaws in the experimental
technique and method of correcting the results which might cause greater random variations
from test to test than would be expected from the standard error attributable to each observa-
tion of the torsional rigidity.

(ii) Tests on a bar of circular cross-section

The tests on the bar of circular cross-section, 4 in. diameter, were carried out using similar
apparatus. The length of the test piece was 10in., the torque lever arm was 10in. and the
bending moment lever arm 11-3in. The distance between each pair of mirrors was 6-5in.

Five torsion tests were carried out, designated A to E. In tests A and B the beam was
elastic, while during tests G, D and E the beam had partially yielded. In these latter tests
the ratios of the width of the elastic core of the beam to its diameter were found from the
theoretical bending moment-curvature relations to be 0-74, 0-67 and 0-61 respectively. The
values of the upper and lower yield stresses were 24-0 and 189 tons/sq.in.

Values of the torsional rigidity C, together with the corresponding values of 5, m and s are
given in table 6 for each test.

TABLE 6
mean value of
Cx 104 Cx10~* for
test 7 % mirrors m (in./lb.) s (in.) (Ib.in.?) cach test
A 0 1-2 0-2205 125-9 7-422 7-471
3-4 0-2132 123-3 7-519
B 0-29 1-2 0-2226 1277 7-438 7-470
34 0-2132 123-4 7-502
C 0-67 1-2 0-2192 126-3 7-439 7-404
34 0-2170 123-8 7-368 »
D 0-71 1-2 0-2192 125-8 7-407 7-421
3-4 0-2148 123-7 7-434
E 075 1-2 0-2172 125-8 7-473 7-504
34 0-2117 123-6 7-534
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The standard deviation of each individual observation of the torsional rigidity was
estimated as 0-023 x 10%, but the standard deviation of each observation from their mean
value, 7-454 X 10%, obtained by summing the squares of the deviations of each observation
from their mean, was found to have the much higher value of 0-058 x10% A test of
significance showed that the probability of the occurrence of such a difference due torandom
variations alone was only about 0-2 %, . It must therefore be concluded that, apart from the
errors associated with the process of fitting the straight lines, a further source of error existed
in these tests. Since there was a far greater variability in the results obtained from the pair
of mirrors 3 and 4, it seems probable that one of the soldered attachments for these mirrors
was not forming a perfectly rigid joint.

However, whether or not the observations deduced from the data taken from the pair of
mirrors 3 and 4 are rejected, it is again impossible to detect any appreciable change in the
torsional rigidity due to partial yield under the applied bending moment.

(b) Bending combined with shear

Ordinary black mild steel was again used in this experimental work. Tests were carried
out on a bar of rectangular cross-section, nominal dimensions 1 X 1in., and a bar of nominal
£ in. square cross-section. The apparatus was similar for both series of tests, and was as shown
diagrammatically in figure 36.

dial gaugel

i

! 7

[ 20
mirrors

’ dial gauge 2
|

Wo

Ficure 36. Apparatus for torsion tests on a cantilever.

The bars were tested as cantilevers, of length 25in., the 1 x £in. bar being bent about its
weaker principal axis. At the encastered end the bars were rigidly clamped by means ofa 1 in.
plate bolted to a heavy base plate by eight § in. bolts. The vertical deflexion of the beam was
measured at mid-span by a Mercer dial gauge of the plunger type, reading to the nearest
0-0001 in. This position for the measurement of the deflexion was chosen because the total
travel of the plungers on these gauges is 4in., and the end deflexion of each beam was
somewhat greater than this.

A torque could be applied to the beam near the encastered end through a light loading
lever, clamped to the beam 6in. from the encastered end, the lever arm for the torsion loads
being 13in. The twist of the beam was measured in the usual way by the two mirrors, 1 and
2, fixed to short lengths of copper wire soldered to the beam at points  and 5}in. from the

encastered end of the beam.
29-2


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

Py
y )\
e A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

224 B. G. NEAL ON LATERAL INSTABILITY OF

A small correction to the applied torque was due to the fact that the free end of the beam
deflected slightly in a lateral direction when the torque was applied. This lateral deflexion
Jd, was measured by dial gauge 2, as shown, the correction to the applied torque being W, 4,.

Five torsion tests were carried out on each beam, designated A to E in each case. In each
test the load W] was held constant while the torsion loads W, were increased in 1 1b. increments
from 0 to 101b. and then removed. It was found that the vertical deflexion changed very
little during the torsion tests even when the beams had partially yielded, so that it was
possible to proceed with the flexure after the completion of each torsion test.

Using the theory of flexure of a cantilever in the yield range as given by Baker & Roderick
(1940), the readings of dial gauge 1 for each value of ] could be analyzed to find the values
of the upper and lower yield stresses giving the best degree of fit with the observations of load
and deflexion during flexure in the yield range. For the 1 x }in. beam these values were
20-9 and 18-1 tons/sq.in., and for the $ in. square beam 20-7 and 17-7 tons/sq.in. respectively.

For each beam the torsion tests A and B were carried out while the beam was still elastic,
whereas in tests C, D and E, the beams had partially yielded. The shape of the boundary
between the elastic core of the beams and the outer yielded regions was calculated for these
latter tests, and the results of these calculations are given in figure 37.

C D E outersurface ¢ D E

- %—E—— of beams //

i
|
-
2

1 x £ in. section 2 x 2 in. section

i

|

|

|
o }
centre line _j _ - _ I
of beams 2

_— e
|
|
!

Ficure 37. Shape of elastic-plastic boundaries. The numbers refer to the mirrors.

The maximum torque applied during each torsion test was 1301b.in., subject to the small
correction already described. The maximum shear stress induced by this torque, assuming
the elastic stress distribution, was 3-2tons/sq.in. for the beam of 1 x }in. cross-section,
occurring at the centres of the longer sides, where yield due to the bending stresses occurred.
For this beam there was no sign of creep of the mirror readings during the torsion tests, and
when the loads were removed the permanent set in twist was zero within the limits of
experimental error, indicating that no plastic flow in torsion had occurred.

The maximum shear stress in the beam of §in. square cross-section was 4-9 tons/sq.in.,
occurring at the centre of each side. For this beam creep of the mirror readings was observed
during the torsion tests D and E, at loads of 8 and 61b. respectively, and on removing the
torsion loads it was noticed that a small residual twist remained in the test section. This
indicated that plastic flow in torsion had occurred in these tests, presumably due to the
somewhat higher value of the maximum shear stress. The readings taken during these tests
are given in table 7, the entries in this table being the difference between the vertical scale
deflexions for the mirrors 1 and 2.

The observations were analyzed as described previously, and the results of the tests on the
1 X 1in. beam are summarized in table 8.
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YIELDED MILD STEEL BEAMS 225
TABLE 7
W,(b.) 0 1 2 3 4 5 6 7 8 9 10 0

test D 0 0-50 1-01 1-50 1-99 2-50 3-00 3-52 4-04* 4-58 508 0-05
test E 0 0-52 1-04 1-55 2-05 2-55 3-08*%  3-59 414 468 524 010

* Creep observed.

TABLE 8
test m (in./b.) . s (in.) 7 (%) Cx 104 (Ib.in.2)
A 0-3341 131-6 0 5-120
B 0-3324 130-8 0-16 5107
G 0-3298 130-2 0-72 5095
D 0-3325 1314 0-93 5-090
E 0-3285 131-1 1-00 5-136

It will be seen that the observations of the torsional rigidity vary very little from a mean
value of 5-110 x 104, and in fact the highest value of the rigidity occurred in test E, in which
the beam was most plastic. The standard error of each observation of the torsional rigidity
was estimated from the data as 0-016 x 10%. The standard error of the difference between
any two of the torsional rigidities was therefore 0-016 x 10%,/2, or 0-022 x 10%. The greatest
difference occurring was 0-041 x 10* between tests G and E, and a test of significance showed
that the probability of this difference being due to errors of random sampling was about
7-5 %, . This probability is low, but cannot be judged significant.

Each observation of the torsional rigidity may therefore be expected to be the same, and
their degree of scatter about their general mean, 5-110 x 10%, may be examined to form
a separate estimate of their standard error. In this way, the standard error may be estimated
as 0-019 x 104, and this value does not differ significantly from the previous value 0-016 x 10%.
Thus the only cause of variance of the observations was that associated with the process of
estimating the slopes of the straight lines fitted to the observations of load and deflexion. The
experimental technique was therefore satisfactory.

The results of the tests on the §in. square section beam are summarized in table 9. In
analyzing the results of the torsion tests D and E, in which creep occurred, the observations
taken after creep was first noted, as indicated in table 7, were rejected.

TABLE 9
test m (in./lb.) s (in.) 7 (%) C %10~ (Ib.in.?)
A 0-5066 132-6 0 3-403
B 0:5065 132-6 0-12 3-399
C 0-5015 1324 0-32 3421
D 0:5012 - 132:6 0:36 3-426
E . 0-5100 1341 0-42 3-404

As in the previous tests, there is no marked variation in the values of the torsional rigidity
from their mean value, 3-411 x 10%. The standard errors of the rigidities associated with the
process of fitting a straight line through the observations taken in each test were

tests A, B and G, 0-0056 x 10%, test D, 00090 x 10%, test E, 0:0140 x 10%

the higher values in tests D and E being due to the smaller number of observations available.
The standard error as deduced from the deviations of each value of the torsional rigidity
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from their mean is 0-0121 x 10%, and this value does not differ significantly from those given
above. The experimental technique was therefore again satisfactory.

The results of these tests, both on beams in pure bending and with bending combined
with shear, confirm that the initial torsional rigidity remains unaltered at its elastic value
when partial yield has occurred. The latter tests also verify indirectly that when a beam is
bent in the yield range the shear is carried entirely in the central elastic core of the beam.

PART III. THE CONDITIONS CAUSING LATERAL INSTABILITY

13. INTRODUCTION

If a thin deep beam is loaded in one plane so as to cause flexure about the stronger, or
primary principal axis of its cross-section, failure by lateral buckling may occur by the
development of lateral deflexions out of the plane of the applied loads, together with twist
about the longitudinal axis of the beam. Prediction of the conditions causing lateral buckling
was shown in part I to involve a knowledge of the initial secondary flexural rigidity B, and
the initial torsional rigidity C. B may be defined as the initial slope of the bending moment-
curvature relation for flexure about the weaker, or secondary principal axis of the cross-
section of the beam, while the applied loads are held constant, and a corresponding definition
may be given for C.

In this part the conditions causing lateral instability for mild steel beams of rectangular
cross-section are discussed, it being assumed that the applied loads are sufficiently great to
cause partial yield of the beams. In part I a discussion of the flexure of partially yielded
beams of annealed mild steel was given. For such steel the stress-strain characteristic may be
taken as identical for tension and compression until strain hardening sets in. Hooke’s Law
is obeyed until the upper yield stress 4f; is reached, after which further straining takes place
at a constant lower yield stress f; up to the point where strain hardening commences.

It was shown in part I how the initial secondary flexural rigidity falls off progressively as
the bending moment is increased in the yield range, and in part II the initial torsional
rigidity was shown to remain constant at its value for elastic torsion. Using these results the
criterion for lateral instability is determined for beams bent by pure terminal couples, and
experimental verification of the results is given. A finite difference approximation method
is also developed to cover cases in which the bending moment varies linearly along the beam,
and is applied to the case of a beam with a central concentrated load, and also a cantilever.

14. PURE BENDING

The critical lateral buckling moment for a beam bent by pure terminal couples depends
on the degree of fixity of the ends of the beam. If it is supposed that the ends are free to
rotate about the axis of secondary bending but are prevented from twisting about the
longitudinal axis of the beam, the critical lateral buckling moment is given by

e "
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where L is the length of the beam, and 4, termed the overall primary flexural rigidity, is the
ratio of the primary bending moment to the primary curvature. This result may readily be
derived by the method indicated by Reissner (19o4) for the case of a cantilever, and differs
from the result usually given by the inclusion of the two terms in the denominator beneath
the radical.

If the beam is of breadth 25 and depth 24, d being greater than b, the elastic flexural
rigidities 4 and By about the primary and secondary principal axes are % Ebd® and £ Edb?,
respectively, E being Young’s modulus. The torsional rigidity C is given by & Gdb3f(b/d),
G being the modulus of rigidity, where f(b/d) is given closely by (1—0-63 b/d). The bending
moment M, at which yield first occurs in the outer fibres of the beam is given by % uf; bd>.
Equation (14-1) may therefore be rewritten in non-dimensional form as

B (b
5,7l
ERTERT
4, BEdZ) A, E ) )
As stated in part I, the relation between the bending moment and curvature during
primary flexure in the yield range is

Alcr 2 (3 Ky 1

e —p)(2—1), =2 14-3
=), =g (14:3)
where the depth of the central elastic portion of the beam is 2pd, «, is the curvature, and «,
is the curvature corresponding to M. The overall primary flexural rigidity is therefore given

by W v
cr cr .
4M_K1 pA, % (14-4)

s
P2

L J(EG)M 4
2d” " uf, M,d%4,

(14-2)

When the curvature becomes infinite, so that p = 0, the beam becomes fully plastic, and
is sustaining the greatest possible bending moment on this theory. It will be seen from
equation (14-3) that the value M, of this moment, termed the fully plastic moment, is 3/2u.
In practice, however, the theory breaks down for large curvatures owing to the onset of strain
hardening in the outer fibres.

Illustrative calculations have been made using the following numerical values:

E =30x10°%1lb./sq.in., G =12x1081lb./sq.in,
4f1 = 20 tons/sq.in., bld=1%,  f(bld) = 0-92,

so that equation (14-2) reduces to
\

; |

L B,
2q = 208 (A 1B (A oo
4, 643) A )’

From equations (14-3), (14'4), and (14-5), relations between L/2d and M, /M, were
calculated for values of z between 1-0 and 1-5, B/Bj, being known as a function of p from the
results of part I. These relations are shown in figure 38, together with the rectangular
hyperbola appropriate to wholly elastic flexure.

(14-5)
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It will be seen that as the value of M,,/M, for a given value of x4 increases above 1 the
corresponding value of L/2d decreases at first more rapidly than if the section had remained
elastic. A sharply defined minimum value of L/2d is eventually reached, after which the
value of L/2d rapidly tends to infinity as M,, approaches the fully plastic moment . This
latter branch of the curve is of little interest, however, since a beam of given length will
always buckle laterally when the bending moment assumes the somewhat smaller critical
value given by the lower branch of the curve.

15 .
| A
| AN }
l =10 3
|4 + ‘ s \ \‘
N
13 |- ! h
[
Mcr |2 ‘ 1-2
M, "er \‘
T
BRS 11
i—_r.“\\|.4
|
-0 1 |
o] 5 L 25
2d
os L

Ficure 38. The critical lateral buckling moment for a beam in pure bending. L points where
K;[ky=8; —-— locus of minima of L/2d; ---- relation assuming elastic behaviour.

The discrete drop in the value of B at the onset of plasticity, discussed in part I, causes
a discrete drop in the value of L/2d at M,, = M, for values of u greater than 1. Lateral
buckling may therefore be expected to occur rather abruptly in certain cases. As an example,
consider a beam for which L/2d = 17-5, y = 1-4. From figure 38 it will be seen that when
the applied primary bending moment M, is just less than M,, M, = 1-16 M,, since the
section is entirely elastic, whereas when A/, is just equal to M, M, = M,.

The equation to the locus of the minima of L/2d may readily be determined, since the
value of p at the minima is of the order of 0-1 for any value of x. It was shown in § 5, part I,
that if p is less than a certain critical value, depending on g, the unloading zones which form
during the secondary flexure process are triangular in shape. This point is illustrated in
figure 7, from which it will be seen that the critical value of p is never less than % . Thus at the
minima of L/2d the unloading zones are always triangular, and reference to equation (5-8),
part I, shows that in this case B/Bj, = kp, where £ is a function of x alone. Thus in equation
(14-2), L/2d is given explicitly as a function of p in the neighbourhood of the minima.
Differentiating this equation, it is found that the value of p corresponding to the minimum
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L. 16 G b*
value of 54 is approximately — 3 B

With this approximation it then follows that the locus of the minima of L/2d is given by

(éLZl)min Sgﬂgf;f ( )/J(Qﬂk dz) | (14-6)

and this locus is plotted in figure 38.

As discussed previously in part I, the analysis of flexure in the yield range breaks down
when the primary bending moment is large enough to induce strain hardening in the outer
fibres of the beam. This occurs when the extreme fibre strain is about eight times the strain
at yield, so that «,/«y = 1/p = 8. The points at which the value of p is } are marked on the
curves in figure 38. It will be seen that the minima of L/2d are closely approached along the
lower branches of the curves before the value of p falls from 1 at the onset of plasticity to .
Since as already discussed it is only the lower branches of the curves that are of interest, there
is little point in extending the analysis to include the effects of strain hardening.

ya (g) , p* being neglected in comparison with unity.

15. BENDING COMBINED WITH SHEAR

(a) The governing differential equation
In the case of a beam loaded in such a way that a constant shear force exists, so that the
bending moment varies linearly along the length of the beam, it is not possible to give an

explicit solution for the critical lateral buckling moment. It has been shown by Federhofer
'(1931) that the differential equation governing this class of problem is

pralonsoCa)) (-2 ko= (15:1)

where P is the shear force, ¢ is the angle of twist of the beam measured from its unloaded
position, and s denotes distance measured along the axis of the beam. The relation between
$ and the curvature k, about the secondary principal axis is

ds( ?IS) (1—~~§) Pkys, (15-2)

and the origin of s is chosen so that the primary bending moment A4 is Ps.

In general there will exist three independent end conditions which will enable the critical
load causing lateral instability to be determined, since equation (15-1) is of the third order.
Two particular cases are considered, as indicated in figures 39 and 40.

[4

Ficure 39. Central concentrated load. Ficure 40. Cantilever.

Figure 39 illustrates the case of a beam of length 2/ subjected to a central concentrated
load 2P. It is assumed that at each end of the beam twist is prevented, but that there is
freedom to rotate about the secondary principal axis. When s = 0, ¢ = 0, and from equation
(15-2), d*¢/ds? = 0. At the centre of the beam, where s = [, df/ds = 0 by symmetry.

VoL. 242. A. 30
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Figure 40 illustrates the case of a cantilever of length / subjected to an end load P. At the
free end the torque is zero, so that when s = 0, d¢/ds = 0. At the encastered end, ¢ = 0 and
the secondary curvature «, is also zero, so that from equation (15-2), d?¢/ds? = 0. In both
these cases the load is assumed to be applied through the centroid of the cross section.

Before proceeding to the solution of equation (15-1) it will be convenient to rewrite this
equation in non-dimensional form. Making the substitutions

PA B
— 2 .- " {1 -ZE
s=xl, 7%= BEC(I AE),
. 1d 1d% O dp P
it is found that F%—C[F xdx2]+a’x xP) = A g (15-3)
. (1—-By/dy) B
where F(x) = (T—BJA) B,

When the applied load is sufficiently great to ensure that yield occurs in some length of
the beam, the function F(x) varies with x in this region, since as discussed in part I both
A and B are functions of the primary bending moment and therefore of ¥ when the beam has
partially yielded. For flexure in the yield range F(x) cannot be expressed in a manner
suitable for differentiation, so that it is necessary to integrate equation (15-3), giving

Fle) 00 1yt = 2, (), (15-4)
where Ja(x) = ;4(/: f ﬁél~xa’¢

By considering the end conditions it will be seen that the arbitrary constant of integration
a assumes the value 0 for the case of a central concentrated load, and 1 for the case of
a cantilever. The utility of equation (15-4) lies in the fact that C/A4is usually small. With the
numerical values adopted for the case of pure bending, C/4; = 0-023. The term f, (x) is
therefore small, and can be estimated with sufficient accuracy from a rough guess of the
mode of ¢.

(b) Solution by finite difference approxirﬁations

The eigen-value y in equation (15-4) may readily be determined by using finite difference
approximations to the first and second derivatives of ¢. The work was facilitated by the use
of the method described by Fox (1947). In this method a preliminary estimate of the mode is
formed by neglecting all but the first, dominant, term in the infinite series of finite differences
for the derivatives. From this mode numerical values of the subsequent terms in the series
are calculated, and these values are then incorporated to form an improved estimate of the
mode and eigen-value. The process may be repeated until the desired accuracy is obtained,
but it is a feature of this method that rapid convergency is secured.

The unit length of the beam subjected to a constant shearing force is divided into 7z equal
parts of length 1/n by a series of points numbered 0 to 7, the point 0 coinciding with the origin
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YIELDED MILD STEEL BEAMS 231
of 5. Following the scheme adopted by Fox (Tables 1942), the finite differences are computed
as follows:

¢r—l , a\;l—l
a\r~%
P, 8, etc. 8, ==%(0,_ %—M‘;H) etc.
o
¢r+l 3r+1
The derivatives of ¢ at the point r are given by
(d¢) n[8]— 187 1+ 2007 .1, (155)
d2 4 1v v1
(09, -t oo

Replacing d% /dx? in equation ( 15~4) by its finite difference approximation (15-6) gives

¢r-l :[ n4F :|¢r ¢r+l+7;lé];‘;z‘<(:))+é]> (15'7)
where 4 = {0 — 67 ...
The term 4 in equation (15-7) represents the difference correction’ of Fox (1947) which
is calculated numerically from the preliminary estimate of the mode and used to improve the
estimate of the mode and eigen-value.

(¢) Beam with central concentrated load

To illustrate the method, consider the case of a beam with a central concentrated load,
applied through the centroid of the cross section. At the centre of the beam, at the point
r = n,dp/dx = 0, so that

F(Gri1—8,-1) =80 460, .. = 0. (15-8)

The procedure adopted is to form a preliminary estimate of the mode by neglecting the
difference corrections and guessing the mode of ¢ to form a rough estimate of the value of
Jo(x) in equation (15-7). Assigning to @, an arbitrary value, say 106, and guessing a value
for y, ¢, , may be calculated from equation (15-7), with r = n, and equation (15-8), by
eliminating the value ¢, , which is exterior to the length of the beam under consideration.
Pr_2> Pu-3, €tc., may then be calculated in succession from equation (15-7) with r =n—1,
n—2, etc., until finally a value of ¢, is obtained. This value should be zeroj; if it is not, a fresh
value of y must be guessed and the process repeated.

In this way a preliminary estimate of the mode of ¢ is formed. This estimate is then used
to calculate the values of f,(x) and the difference corrections, and with these values
incorporated in equations (15-7) and (15-8) the process is repeated to form a closer estimate
of the mode and the eigen-value y. The convergency of the method is such that this second
estimate of y is usually of great accuracy.

Calculations were carried out for a beam for which 4/d = ¥, with numerical values of E,
G, and uf; as used in the case of pure bending. If M, denotes the maximum bending moment

existing at the centre of the beam when lateral buckling occurs, it may readily be shown that
L M,
5= 12 SOyM , (159)

30-2
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where L denotes the total length of the beam, 2/. The value of y corresponding to wholly
elastic behaviour is found from the solution of Federhofer (1931) to be 2-128.

The value of n chosen for the calculations was usually 20, and in a few cases 40. These
values may appear to be unduly large, particularly as the primary purpose of the development
of the finite difference correction method was to reduce the size of the interval necessary to
obtain an accurate result. The reason for this choice is that since the bending moment varies
linearly along the length of the beam, only a comparatively small central portion actually
yields, and it was desired to include a reasonable number of points in the yielded region,
where the flexural rigidities 4 and B become functions of the bending moment. Since at any
section the value of primary bending moment M, is #M,,, the value x, of x at which the
yielded region commences is My/M,,, M, being the bending moment at which yield first
occurs. Since the maximum bending moment which the section can sustain is the fully
plastic moment $M,/u, x, can never be less than £4, so that even when g is unity only one
third of the length of the beam yields.

To illustrate the method, consider a particular case for which g = 1-1, M, /M, = 1-143.
As shown in part I, the value of B drops by a discrete amount when the primary bending
moment M, attains the value M, at which yield just occurs. It was thought that the finite
difference approximations would be most accurate if this discontinuity in the value of B was
arranged to take place at the centre of an interval, and for this case, Af; = M, when x = 0-875,
midway between the points r = 17 and r = 18.

Values of F(x), calculated in accordance with the theory given in part I, are given in
table 10, together with the values of 4/4, required for the calculation of f; (x).

TABLE 10
X 0-9 0-95 1-0
F(x) 0-928 0-869 0-798
AJA, 0-988 0-949 0-890

In the first stage of the calculations the finite difference corrections in equations (15-7) and
(15-8) were neglected. The value of f; (¥) was calculated by assuming the mode of ¢ calculated
for y = 1-1, M, /M, = 1-290.

The first value of y assumed was 2-07, giving ¢,= —8143. The second value of y assumed
was 2-0609, giving ¢, = —278. The mode thus obtained was considered to be sufficiently
accurate to enable the finite difference corrections to be calculated, and a fresh estimate of

fo (%) to be made. Table 11 gives this mode, together with the finite differences ¢’, 4", 8” and
0%, and the estimate of f; ().

A fresh calculation was now made using the values of £; (x) and the finite differences given
in table 11. It was necessary to assume some values of the finite differences, and these
assumed values are shown in brackets in the table. The finite differences 47, 8L, etc., were
found to be negligible. '

The first value of y assumed was 2:0609, giving ¢, = 2969. The next value assumed was
12-0643, giving ¢, = — 58, and interpolating from these values y is found to be 2:0642. The
‘inclusion of the finite difference corrections and improved estimate of /; (x) therefore changed
the eigen-value by only 0-16 9, , so that no further improvement was necessary.

The calculation for y = 2:0643, following equations (15-7) and (15-8), is set out in detail
in table 12.
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YIELDED MILD STEEL BEAMS 233
TaBLE 11
¢ 6, 8” 8/// aiv ‘f(‘) ( x)
(—2,185)
1,000,000 (—2,112) (—147) 9,639
. 6,586 (—2,038)
993,414 —10,841 (—147) 9,004
17,427 —1,891
975,987 — 8,950 — 147 8,187
26,377 —1,744
949,610 -7,206 —695 7,277
33,583 —1,049
916,027 — 6,157 —68 6,338
39,740 —981
876,287 —5,176 —83 5,411
44916 - — 898
831,371 4,278 —90 4,527
49,194 —808
782,177 —3,470 —96 3,707
52,664 —712
729,513 —2,758 —95 2,967
55,422 —617
674,091 —2,141 —95 2,317
57,563 —522
616,528 —1,619 —87 1,759
59,182 —435
557,346 —1,184 —86 1,292
60,366 —349
496,980 — 835 -75 912
61,201 —274
435,779 —561 —66 613
61,762 —208
374,017 —353 —60 387
62,115 —148
311,902 —205 —48 224
62,320 —100
249,582 — 1056 -39 115
62,425 —61
187,157 —44 -30 48
62,469 —-31 '
124,688 —13 —20 14
62,482 —11
62,206 -2 (—10) 2
62,484
—278 (0) 0
TABLE 12. ¢,,=10, ¢,,=993,735
__}_(.ZL)Z (1)2[0_@
r—1 F(r) \400 20/ F(r) 50 b1
18 —10,995 110 —12 976,573
17 —9,081 94 —12 950,412
16 7,315 78 —58 916,956
15 — 6,252 68 —6 877,310
14 — 5,257 58 -7 832,458,
13 ‘ —4,346 48 —8 783,300
12 —3,526 39 -8 730,647
11 —2,802 32 —8 675,216
10 —2,176 25 —8 617,616
9 —1,645 19 -7 558,383
8 -1,205 14 -7 497,952
7 — 849 10 —6 436,676
6 ~570 7 —6 374,831
5 — 359 4 -5 312,626
4 —208 2 —4 250,211
3 —107 1 -3 187,687
2 —45 1 -3 125,116
1 —13 0 -2 ) 62,530
0 -2 0 —1 — 58
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234 B. G. NEAL ON LATERAL INSTABILITY OF

The results of the calculations are presented in figure 41, in which the relations between
L/2d and M,,/ M, are plotted for values of y from 1-0 to 1-4.

A comparison of the curves in figure 41 with those of figure 38 shows that the effect of
yield is much less marked than in the case of pure bending, owing to the fact that with
a central concentrated load yield is confined to a comparatively short central section. In
contrast to the case of pure bending, the curves terminate at a finite minimum value of

15
V4
|o3 -
MET
My vz |
1y
1-0 ' !
0 5 30
L
2d
09 L
Frcure 41. Lateral buckling of a beam with a central concentrated load. — points calculated with
n=20; | points calculated with n=40; —-— locus of minima of L/2d; — — relation assuming
elastic behaviour; ---- fully plastic moments.

L/2d as the central bending moment reaches the fully plastic moment. An investigation of
the nature of the limit as # approaches the value 1-5 shows that the locus of the minima of
L/2d terminates on the elastic line when M, = M,. As already pointed out, the theory
breaks down before the fully plastic moment is reached, owing to the onset of strain hardening,
but this only happens when «,/ky is about 8 and the bending moment is within 0-5 %, of the

fully plastic moment.
(d) Cantilever

Calculations similar to those just described were carried out for the case of a cantilever with
a concentrated load applied at the free end through the centroid of the cross-section. The
ratio of b/d was again chosen as §, and the values of E, G, and gf; were as previously given.
If the length of the cantilever is L, it follows that

L M,
“271—— 6 4:0'}’Mcr.

The value of y for the case in which the cantilever remains elastic was shown by Reissner
(1904) to be 4:090.

(15-10)
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YIELDED MILD STEEL BEAMS 235

A calculation with n = 20 for the case in which # = 1-0 and the bending moment at the
encastered end was equal to the fully plastic moment gave the value 3-980 for 7, so that the
reduction in L/2d as compared with the value calculated on the assumption of elastic
behaviour was only 2-7 %, . The small effect of yield in this case is due to the fact that the
reduction in B occurs near the encastered end of the beam, where the angle of twist, and
consequently the secondary bending moment, is small.

16. EXPERIMENTAL WORK

Owing to the difficulty of obtaining suitable specimens of steel strip of sufficient length,
the experimental work was restricted to the case of pure bending, which of all the cases
considered involved the use of the shortest specimens. The material used was bright drawn
mild steel strip, of nominal dimensions 1 x % in. The dimensions of this strip varied very little
along the length of each specimen, the width being maintained within 4+ 0-0003in. and the
depth within 4-0-0006in. It was therefore not necessary to machine the specimens to size.

5
-
= 14
N
_t

[N -
o
=

sl

F-Cold
=

& -EP_ ' EL._,__

| ' 2in.

—-«-l%in.—»—-«l%in.*—
Ficure 42. Encastering block.

The ends of each specimen were prevented from twisting by means of encastering blocks.
Each block consisted of a 3in. x 2§in. steel block, %in. thick, in which a slot was sawn by
an 1in. saw cutter, as shown in figure 42. Since the strip was about 0-002in. oversize in
width, the ends of the specimens were very good force fits in the slots. On the back face of
each block the slot was milled out to form a V, into which the end of the specimen protruded.
A run of weld was then made round this V to secure the specimen to the block.

Four clearance holes for §in. bolts were drilled in each block, thus enabling the block
to be bolted into the end fittings described in part I. Figure 43 shows a specimen bolted in
position in the end fittings, the bolts being located in such a way that the centre line of the
specimen passed through the horizontal axes of the ball races visible in the figure. Application
of equal vertical loads at the ends of the loading levers therefore caused a uniform bending
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236 B. G. NEAL ON LATERAL INSTABILITY OF

moment to be applied along the length of the specimen about its stronger, or primary
principal axis. The specimen was free to rotate at each end about the secondary principal
axis, while twist at each end was prevented by the encastering blocks.

The primary curvature was measured during each test by the two dial gauges which can
be seen in figure 43. These gauges were of the standard spring-loaded plunger type, reading
to the nearest 0-0001in., and measured the vertical deflexion of each loading lever. The
central angle of twist was also measured by means of a small plane mirror attached to a short
length of copper wire soldered to the specimen, a scale with % in. graduations being viewed
through a telescope by reflexion from this mirror. The distance between the mirror and the
scale was 10 ft.

FIGURE 43

Two stocks of the bright-drawn strip, designated A and B, were available for the tests, and
analyses of two samples taken from each stock were made. The results of these analyses are
given in table 13, from which it will be seen that the composition of the steel was somewhat
variable. Unfortunately, however, no better material was available.

TABLE 13. PERCENTAGE COMPOSITION OF SAMPLES

sample G Si Mn Ni Cr P S
A 0-22 0-13 0-59 nil 0-02 0-05 0-05
0-27 0-12 060 nil 0-02 - 0-05 0-05
B 0-15 0-24 0-61 nil 0-02 0-03 0-05
0-14 0-13 0-62 nil 0-02 0-03 0-04

Before heat treatment, the specimens were straightened by cold bending, and then clamped
together in a jig. The annealing was carried out in sealed steel tubes filled with an inert
atmosphere of argon. The soaking temperature was 910° C, and the cooling rate was such
that the temperature dropped to 200° C in 110 min. On removal from the jig the specimens
were still distorted to some extent, and preliminary tests showed that the imperfections were
such that considerable lateral deflexion and twist developed at an early stage in the tests.

This rendered observation of the critical buckling moment very difficult. The critical
moment is, by definition, the moment at which lateral deflexion and twist develop in
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an initially straight beam. In a test the departures from straightness during flexure in the
yield range must not become so excessive that the stress distribution differs materially from
that due to the primary bending moment alone, for if this is the case the secondary flexural
rigidity will no longer be calculable from the primary bending moment alone.

The device adopted to overcome this difficulty was to tilt one of the end fittings through
a small angle by means of a wedge at one side of its base, thus introducing a further imperfec-
tion in the form of a constant twist along the specimen. The amount of tilt necessary to
produce a twist which roughly nullified the effect of the other imperfections was determined
by trial and error during preliminary elastic tests. By this device, the central angle of twist
was usually kept below %°, until in the neighbourhood of the critical moment a small
increment of say 51b.in. in M, caused complete failure, the specimen assuming the buckled
form shown in figure 44. The critical condition could therefore be determined quite

FIGURE 44

accurately. It was, of course, of:rn a matter of hours before failure occurred, owing to the
length of time required for plastic flow to take place after the addition of an increment of
load, but the final collapse of the specimen always occurred very suddenly. Data concerning
the rate of creep under constant load are not given here, as the results obtained were similar
in character to the creep results described in part I.

Preliminary tests were carried out to measure the elastic secondary flexural rigidity and
the torsional rigidity. The experimental arrangement adopted in these tests was similar to
that already described in part II. One end of the specimen was bolted into an end fitting
clamped so as to prevent rotation about each axis, and a light loading lever was bolted to the
other free end of the specimen. A pure couple could be applied to the specimen about either
the secondary principal axis or the longitudinal axis by means of loading wires attached to
this lever, and the changes of curvature and twist were recorded in the usual way by means
of small mirrors attached to small lengths of copper wire soldered to the specimen.

It was thought that the encastering blocks might not completely prevent twist at the ends
of the specimen, and the elasticity of the end constraint against twist was accordingly measured
during the torsion test, one of the mirrors being attached to the specimen 0-2in. from the

VoL. 242. A. 31


http://rsta.royalsocietypublishing.org/

A\

/ y

A

a
{ B
L 2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

238 B. G. NEAL ON LATERAL INSTABILITY OF

encastering block and the end rotation deduced by interpolation. If the encastering torque
corresponding to an end rotation € is A0, it may readily be shown that the critical buckling
moment is reduced by a factor (1 —7), where

20
~ (i —Cj4)’
provided that # is small.

Five tests were carried out on the heat treated material. Tests 1 and 2 were on specimens
cut from the stock 4, and tests 3, 4 and 5 were on specimens cut from the stock B. The
results of a single test 6, carried out on material cut from the stock 4 in the ‘as received’
condition, are also included. The dimensions of each specimen, the measured values of
B, C and 7, and the critical moment calculated on the assumption of elastic behaviour, are
given in Table 14.

TABLE 14
mean mean
depth breadth length By x10-3 Cx10-3 elastic
specimen (in.) (in.) (in.) (Ib.in.?) (1b.in.?) 7 (%) M, (Ib.in.)

1 1-0008 0-1271 11-60 515 7-43 15 1684
2 1-0010 0-1271 12-69 516 7-42 0-4 1557
3 0-9995 0-1268 12-68 5-09 7-31 1-0 1529
4 0-9992 0-1266 1775 507 7-28 2-0 1075
5 0-9994 0-1266 17-68 5-07 7-28 0 1102
6 1-0010 0-1269 11-90 5-10 7-55 0 1673

After a small correction due to the elasticity of the end fittings had been applied, the sum
A, of the dial gauge readings could be taken as proportional to the primary curvature. In
figures 45 to 50 the observations of the primary bending moment M, are shown plotted
against A, together with theoretical curves fitted to the observations in accordance with the
theory giveh in part I. It will be seen that the observations deviate prematurely from the
elastic line, owing to the effect of the initial imperfections in causing secondary bending and
torsion stresses to develop.

From the theoretical curves the value of «,/«, at any value of the curvature could be
deduced, and the values of 4/4; and B/Bj calculated from the theory given in part I. The
value of the critical lateral buckling moment at that value of the curvature could then be
calculated. A curve relating this critical moment to the curvature could therefore be plotted
on each diagram, and the intersection of this curve with the theoretical primary flexure
curve then indicated the values of the primary bending moment and curvature at which
buckling should occur. Such curves are shown in figures 45 to 50. The value of k,/«y at which
buckling should have occurred, together with the value of u, the ratio of upper to lower
yield stress, is also given.

The actual bending moment at which buckling occurred is marked on the prolongation
of the theoretical primary flexure curves, together with the time which elapsed between
the application of the last increment of load and failure.

Data concerning the central angle of twist during each test are not reproduced here in
detail, but the value of the central angle of twist before the application of the last increment
of load is given in table 15, together with the corresponding value of the bending moment.
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YIELDED MILD STEEL BEAMS 239
TABLE 15
test 1 2 3 4 5 6
M, (Ib.in) 1127 1128 1015 970 980 1401
twist (deg.) 0-02 0-43 0-69 0-63 0-39 3-:04
\‘ (ehr) \'\/(ii’l')
e Pl
es /0,0 \ na2s - \
Pou .\ //"O’ \
//O( 7 <l
Hoo = My /0 noo /,cf
o
(lb‘ln') 1075 [~ 1075 [~ :
[0}
o]
1030 _— °© 1050 560 4[00 5100 6:)0 7c|>o a:)o
A, (in. x 103)
1923 500 700 500 pen 700
A, (in. x 103)
Ficure 45. Test 1. =142, k,/k, = 1-45, Ficure 46. Test 2. u=1-40, k, [k, = 1-75.
\ 1000 [~ 1000 [* S he)
V- 3 hr.
1025 (<ff/hr')/", A
-~ \ I //6
,0’/ 915 | 975 [~ ,
s [©]
1000 [~ /E{
M, o
(Ib.in.) / 950 950
°
975 [~ My
925 925
O | L 1 J
739 300 400 500 600 700
00 2 : 009 ! ”
500 600 700 500 600 700
A, (in. x 103)
Ficure 47. Test 3. p=1-40, Ficure 48. Test 4. pp=1-4, Ficure 49. Test 5.
K /ky=1-76, Ki/ky=1. p=14, K /ky=1.
— elastic line; --- theoretical primary flexure curve; —-— theoretical buckling

moment curve; © observations of A;; x observed buckling moment.

It will be seen that in tests 1, 2 and 3 quite satisfactory agreement exists between the
experimental and theoretical buckling moments, although in test 3 buckling occurred
somewhat prematurely.

Tests 4 and 5 were carried out to verify the sudden failure at yield due to the finite drop in
the secondary flexural rigidity. In test 4, for example, the critical moment if the specimen
remained elastic would have been 10751b.in. On the assumption that the value of x was

1-40 the value of B/Bj at yield would drop to 0-767, thereby reducing the critical moment
31-2
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to 9371b.in. The specimen failed at a primary bending moment of 9751b.in., when it was
evident that yield had occurred, although slight deviations from the elastic line due to the
effect of the imperfections were detectable at somewhat lower moments. In test 5 the critical
moment if the specimen remained elastic would have been 11021b.in., dropping to 961 1b.in.
at yield. The specimen actually failed at 9901b.in.

Test 6 was a preliminary test carried out on the material as received. Owing to cold
working during the finishing process the upper yield point was probably destroyed near the

1450 [~

1400 [~

1350 [~
1300 |~
M,
(Ib.in.)

1250 [~

1200 [~

nso -

1eo 450 500 550 600 650 00

A, (in. x 10%)
Ficure 50. Test 6. u=1-24, & /Ky =1-29.
— elastic line; --- theoretical primary flexure curve; —-— theoretical buckling

moment curve; © observations of A;; x observed buckling moment.

surface of the specimen, and residual stresses might also be expected to be present. Neverthe-
less, the observations of A, conformed surprisingly well to a theoretical relation assuming
4 = 1-24, particularly in view of the fact that this test was carried out without tilting one of
the end fittings, so that the central angle of twist was larger than in the previous tests. There
was close agreement between the theoretical and experimental buckling moments.

17. DIScUssION

A theoretical discussion has been given which enables the critical load causing lateral
buckling of a mild steel beam of rectangular cross-section to be predicted for those cases in
which the beam has partially yielded. The theory takes no account of strain hardening, for
it is assumed that indefinite extension or contraction of a longitudinal fibre can take place
under a constant stress, the lower yield stress. However, in many cases lateral buckling
would take place before extensions sufficiently large to cause strain hardening would occur.
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YIELDED MILD STEEL BEAMS 241

The critical load which is calculated is the load at which the beam, if initially perfectly
straight and free from twist, would deflect laterally out of the plane of flexure and simul-
taneously develop twist while the applied load was held constant. At this value of the load
the lateral deflexion and twist, hitherto zero, become indeterminate. In a recent paper by
Shanley (1947), it was pointed out that in cases of plastic buckling it may be possible to find
a critical load, lower than the critical load defined in the conventional manner just given,
above which deflexions may develop with increasing load. If the load exceeds this lower
critical load, and an increment of load is applied, it is then possible for the beam to remain in
equilibrium either by remaining straight or by deflecting by a definite amount which is
determined by the magnitude of the load increment. However, large deflexions can only
develop at the conventional critical load. In terms of the particular problem discussed in
this paper, Shanley’s concept is that secondary flexure occurs while the primary loading
moment is increasing, so that the lateral deflexion and twist take place under increasing load.

If the primary bending moment is permitted to increase while secondary flexure is taking
place, the unloading zones of figure 6 tend to disappear. This implies a reduction in
the value of the secondary flexural rigidity, for in the previous case part of this rigidity was
derived from the unloading zones. If the increment in the primary bending moment is
sufficiently high, the unloading zones will disappear entirely, and the secondary flexural
rigidity will then be as low as possible for the particular value of the primary bending moment
under consideration. In fact this lowest value B’ of the secondary flexural rigidity B will be
the value for a beam of rectangular cross-section of depth 2pd which behaves elastically, so
that B’ = % Epdb® = pB,. Thus in the case of pure bending, the lowest value M’ of the
applied bending moment at which lateral deflexion could occur with increasing load is given
by finding the value of p which satisfies the equations

g e
4 4

While Shanley’s concept of the bifurcation of equilibrium which arises in plastic buckling
is of considerable theoretical interest, it is felt that in practice the conventional critical load
should be considered as of greater importance, for it is this load at which actual collapse
occurs. In practical testing, the possible growth of deflexion under increasing load in the
manner described by Shanley would be masked by the inevitable deflexions arising owing
to initial imperfections in the beam. Moreover, it is known that equilibrium is not reached
after the application of a load increment until plastic flow has been allowed to proceed for
several hours, so that the experimental reproduction of lateral deflexion and twist developing
simultaneously with increase of load would be extremely difficult.

A final point which should be mentioned is that the results of the present paper cannot be
immediately extended to cover cases of beams of T and other sections. A beam of T-section,
for instance, derives some of'its torsional stiffness from the differential bending of its flanges
if the ends of the beam are prevented from warping (Timoshenko 1936). In this case
a system of longitudinal stresses arises in the flanges which reduces approximately to bending
moments of opposite sign in the flanges, tending to bend the flanges in their own plane. The
variation of these bending moments along the length of the beam produces transverse shear
forces in the planes of the flanges, which together constitute a couple offering additional
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242 B. G. NEAL ON LATERAL INSTABILITY OF STEEL BEAMS

resistance to torsion. The analysis given in this paper would require some modification to
take this effect into account, but it has been shown that such an effect only alters the critical
bucklingload of beamsofrectangular cross-section by anegligible amount (Timoshenko 1921).
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